O ct 2 00 3 Quasideterminants and Casimir elements for the general linear Lie superalgebra

نویسنده

  • Vladimir Retakh
چکیده

We apply the techniques of quasideterminants to construct new families of Casimir elements for the general linear Lie superalgebra gl(m|n) whose images under the Harish-Chandra isomorphism are respectively the elementary, complete and power sums supersymmetric functions. School of Mathematics and Statistics University of Sydney, NSW 2006, Australia [email protected] Department of Mathematics Rutgers University, Piscataway, NJ 08854, USA [email protected]

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

2 9 Se p 20 03 Quasideterminants and Casimir elements for the general linear Lie superalgebra

We apply the techniques of quasideterminants to construct new families of Casimir elements for the general linear Lie superalgebra gl(m|n) whose images under the Harish-Chandra isomorphism are respectively the elementary, complete and power sums supersymmetric functions. School of Mathematics and Statistics University of Sydney, NSW 2006, Australia [email protected] Department of Mathemat...

متن کامل

ar X iv : m at h / 06 10 57 9 v 1 [ m at h . R T ] 1 9 O ct 2 00 6 Universal Central Extensions of the Matrix Leibniz

The universal central extensions and their extension kernels of the matrix Lie superalgebra sl(m, n,A), the Steinberg Lie superalgebra st(m, n,A) in category SLeib of Leibniz superalgebras are determined under a weak assumption (compared with [MP]) using the first Hochschild homology and the first cyclic homology group.

متن کامل

Equivalence of Blocks for the General Linear Lie Superalgebra

We develop a reduction procedure which provides an equivalence (as highest weight categories) from an arbitrary block (defined in terms of the central character and the integral Weyl group) of the BGG category O for a general linear Lie superalgebra to an integral block of O for (possibly a direct sum of) general linear Lie superalgebras. We also establish indecomposability of blocks of O.

متن کامل

On generalized reduced representations of restricted Lie superalgebras in prime characteristic

Let $mathbb{F}$ be an algebraically closed field of prime characteristic $p>2$ and $(g, [p])$ a finite-dimensional restricted Lie superalgebra over $mathbb{F}$. It is showed that anyfinite-dimensional indecomposable $g$-module is a module for a finite-dimensional quotient of the universal enveloping superalgebra of $g$. These quotient superalgebras are called the generalized reduced enveloping ...

متن کامل

A ug 2 00 2 QUASIDETERMINANTS

The determinant is a main organizing tool in commutative linear algebra. In this review we present a theory of the quasideterminants defined for matrices over a division algebra. We believe that the notion of quasideterminants should be a main organizing tool in noncommutative algebra giving them the same role determinants play in commutative algebra.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008